12/15/21, 1:40 PM Lab11-classes-211(1) - Jupyter Notebook

1 ICS 104 - Introduction to Programming in Python and C

1.1 Objects and Classes - Lab

2 Lab Objectives

» To understand the concepts of classes, objects and encapsulation
« To implement instance variables, methods and constructors
» To be able to design, implement and test your own classes

3 Worked Example

» Problem Statement: Your task is to write a class that simulates a bank account. Customers can deposit and withdraw funds. If
sufficient funds are not available for withdrawal, a $10 overdraft penalty is charged. At the end of the month, interest is added to the
account. The interest rate can vary every month.

» Step 1: Get an informal list of the responsibilities of your objects.

« The following responsibilities are mentioned in the problem statement:
= Deposit funds.
= Withdraw funds.
= Add interest.

» There is a hidden responsibility as well. We need to be able to find out how much money is in the account.
= Get balance.

» Step 2: Specify the public interface.
= To deposit or withdraw money, one needs to know the amount of the deposit or withdrawal:

= def deposit (self, amount):
localhost:8888/notebooks/11/Lab11-classes-211(1).ipynb

110

12/15/21, 1:40 PM

= def withdraw (self, amount):

Lab11-classes-211(1) - Jupyter Notebook

o To add interest, one needs to know the interest rate .

that is to be applied:

= def addInterest (self, rate) :

» Finally, we have

= def getBalance (self) :

« Step 3: Document the public interface:

A bank account has a balance that can be changed by deposits and withdrawals
#
class BankAccount :

Constructs a bank account with a given balance.

@param initialBalance the initial account balance (default = 0.0)

#

def __init__(self, initialBalance = 0.0) :

Deposits money into this account.

@param amount the amount to deposit
#

def deposit(self, amount) :

Makes a withdrawal from this account, or charges a penalty if
sufficient funds are not available.

@param amount the amount of the withdrawal

#

def withdraw(self, amount) :

Adds interest to this account.
@param rate the interest rate in percent

Step 4: Determine instance variables.
We need to store the bank balance:

= self. balance = initialBalance

Do we need to store the interest rate?

Now we move to the constructor. The constructor
should accept the initial balance of the account.
It can be useful to allow for an initial zero balance
using a default argument.
= def __init__ (self, initialBalance =
0.0) :

#
def addInterest(self, rate) :

Gets the current balance Of thiS account.

@return the current balance
#
def getBalance(self) :

= No — it varies every month, and is supplied as an argument to addInterest.

What about the withdrawal penalty?

= The problem description states that it is a fixed $10, so we need not store it.

localhost:8888/notebooks/11/Lab11-classes-211(1).ipynb

If the penalty could vary over time, as is the case with most real bank accounts, we would need to store it somewhere (perhaps in a
Bank object), but it is not our job to model every aspect of the real world.

2/10

12/15/21, 1:40 PM Lab11-classes-211(1) - Jupyter Notebook

localhost:8888/notebooks/11/Lab11-classes-211(1).ipynb 3/10

12/15/21, 1:40 PM Lab11-classes-211(1) - Jupyter Notebook

In[]: 1 ##
2 # This module defines a class that models a bank account.
3 #
4
5 ## A bank account has a balance that can be changed by deposits and withdrawals.
6 #
7 class BankAccount :
8 ## Constructs a bank account with a given balance.
9 # @param initialBalance the initial account balance (default = 0.0)
10 #
11 def init (self, initialBalance = 0.0) :
12 self. balance = initialBalance
13
14 ## Deposits money into this account.
15 # @param amount the amount to deposit
16 #
17 def deposit(self, amount) :
18 self. balance = self. balance + amount
19
20 ## Makes a withdrawal from this account, or charges a penalty if
21 # sufficient funds are not available.
22 # @param amount the amount of the withdrawal
23 #
24 def withdraw(self, amount) :
25 PENALTY = 10.0
26 if amount > self. balance :
27 self. balance = self. balance - PENALTY
28 else :
29 self. balance = self._balance - amount
30
31 ## Adds 1interest to this account.
32 # (@param rate the interest rate 1in percent
33 #
34 def addInterest(self, rate) :
35 amount = self. balance * rate / 100.0
36 self. balance = self. balance + amount
37
38 ## Gets the current balance of this account.
39 # @return the current balance
40 #
41 def getBalance(self) :
42 return self. balance

localhost:8888/notebooks/11/Lab11-classes-211(1).ipynb

4/10

12/15/21, 1:40 PM Lab11-classes-211(1) - Jupyter Notebook

43
44

Tt

This program tests the BankAccount class.
#

from bankaccount import BankAccount

In []:

harrysAccount = BankAccount(1000.0)
harrysAccount.deposit(500.0) # Balance is now $15600
harrysAccount.withdraw(2000.0) # Balance is now $1490
harrysAccount.addInterest(1.0) # Balance is now $1490 + 14.90
10 print("%.2f" % harrysAccount.getBalance())

11 print("Expected: 1504.90")

OooNOTUVTDEWNER

4 EXxercises

4.1 Exercise#1

Define a class Point that represents a pointin 2 — D plane. The point has x and y coordinates. Define the following:

» A constructor to initialize the x, y coordinates.

« Amethod translate(self, dx,dy) to translate the point object dx, and dy units in x and y directions, respectively.
e Amethod distanceTo (self, point2) to return the distance between the point referenced by self and point2.
getX(self) to return the value of x coordinate.

getY(self) to return the value of y coordinate

Test the above class by:

» Creating 2 point objects; one with (3,5) as x,y coordinates; the second with (-10,30) as x,y coordinates.
» Move the first point 5.5 units in x direction and -12.5 units in y direction using translate method
» Find the distance between the 2 points in their current location using distanceTo method

A Sample output resulting from running the above test class is shown below

localhost:8888/notebooks/11/Lab11-classes-211(1).ipynb 5/10

12/15/21, 1:40 PM

new coordinates of pointl= (8.

Coordinates of point 2 = (-16@.

Distance between the 2 points

localhost:8888/notebooks/11/Lab11-classes-211(1).ipynb

5

0

, -7.5)
, 30.0)
41.82

Lab11-classes-211(1) - Jupyter Notebook

6/10

12/15/21, 1:40 PM Lab11-classes-211(1) - Jupyter Notebook
In [23]: # YOUR CODE HERE

from math import *

pointl = Point(3,5)
point2 = Point(-10,30)
updatedCoordinates = pointl.translate(5.5,-12.5)

1
2
3
4
5 def main():
6
7
8
9 ", updatedCoordinates)

print("New coordinates of pointl =

10 distance = pointl.distanceTo(point2)

11 print("Coordinates of point 2 = " , point2. point)

12 print("Distance between the 2 points = %.2f" %distance)
13

14 class Point():

15 def __init_ (self,initialx = 0.0, initialy = 0.9):

16 self. point = (initialx,initialy)

17

18 def translate(self, dx,dy):

19 self. point = (self._point[@] + dx, self._point[1] + dy)
20 return self. point

21

22 def distanceTo(self, point2):

23 distance = sqrt((self._point[@]-point2._point[0])**2 + (self._point[1] - point2
24 return distance

25

26 def getX(self):

27 return self. point[0]

28

29 def getY(self):

30 return self._point[1]

31

32 main()

33

New coordinates of pointl = (8.5, -7.5)
Coordinates of point 2 = (-10, 30)
Distance between the 2 points = 41.82

4.2 Exercise # 2

localhost:8888/notebooks/11/Lab11-classes-211(1).ipynb

._point[1])**2)

7/10

12/15/21, 1:40 PM Lab11-classes-211(1) - Jupyter Notebook

Implement a class Portfolio. This class has two objects, checking and saving, of the type bankAccount that was developed in the
worked example. Initialize the 2 bank accounts with 0 initial balance.

» Implement four methods
= def deposit (self, amount, account)
= def withdraw (self, amount, account)
» def transfer (self, amount, account)
= def getBalance (self, account)
» Here the account stringis "S" or "C" for Saving and Checking, respectively. For the deposit or withdraw, it indicates which
account is affected. For a transfer , it indicates the account from which the money is taken; the money is automatically transferred

to the other account.
» To test your class:
= create one Potfolio object
= deposit 10000 in its checking account
= transfer 5000 from checking account to saving account
= withdraw 2500 from checking account
= display the balance of both accounts
» A run for the above test program will result in the following output

Saving balance = 5000.0
Checking balance = 2500.0

localhost:8888/notebooks/11/Lab11-classes-211(1).ipynb 8/10

12/15/21, 1:40 PM

In [24]:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Lab11-classes-211(1) - Jupyter Notebook

def main():
myAccount = portfolio()
myAccount.deposit(10000, "C")
myAccount.transfer(5000, "C")
myAccount.withdraw(2500, "C")

print("Saving balance = ", myAccount.getBalance("S"))
print("Checking Balance = ", myAccount.getBalance("C"))

class BankAccount :

def init (self, initialBalance = 0.0) :
self. balance = initialBalance

def deposit(self, amount) :
self. balance = self._balance + amount

def withdraw(self, amount) :
PENALTY = 10.0
if amount > self. balance :
self. balance = self. balance - PENALTY
else :
self._balance = self._balance - amount

def addInterest(self, rate) :
amount = self. balance * rate / 100.0
self. balance = self. balance + amount

def getBalance(self) :
return self. _balance

class portfolio:

def _init (self):
self. savebalance = BankAccount()
self._checkbalance = BankAccount()

def deposit(self, amount, account):
if account == "S":
self. savebalance.deposit(amount)

localhost:8888/notebooks/11/Lab11-classes-211(1).ipynb

9/10

12/15/21, 1:40 PM

Lab11-classes-211(1) - Jupyter Notebook

43 if account == "C":

44 self. checkbalance.deposit(amount)
45

46 def withdraw(self, amount, account):

47 if account == "S":

48 self._savebalance.withdraw(amount)
49 if account == "C":

50 self. checkbalance.withdraw(amount)
51

52 def transfer(self, amount, account):

53 if account == "S":

54 self. savebalance.withdraw(amount)
55 self. checkbalance.deposit(amount)
56 if account == "C":

57 self. checkbalance.withdraw(amount)
58 self. savebalance.deposit(amount)
59

60 def getBalance(self, account):

61 if account == "S":

62 return self._savebalance.getBalance()
63 if account == "C":

64 return self. checkbalance.getBalance()
65

66 main()

Saving balance = 15000.0

Checking Balance =

localhost:8888/notebooks/11/Lab11-classes-211(1).ipynb

2500.0

10/10

