
12/22/21, 5:14 PM Lab06-Loops-1 - Jupyter Notebook

localhost:8888/notebooks/6----/Lab06-Loops-1.ipynb 1/13

1 ICS 104 - Introduction to Programming in Python and C

1.1 Loops - Lab 1

2 Lab Objectives
To implement while and for loop
To become familiar with common loop algorithms

3 Worked Example

Problem Statement: Read twelve temperature values
(one for each month), and display the number of the
month with the highest temperature. For example,
according to http://worldclimate.com
(http://worldclimate.com), the average maximum
temperatures for Death Valley are (in order by month,
in degrees Celsius):

18.2 22.6 26.4 31.1 36.6 42.2
45.7 44.5 40.2 33.1 24.2 17.6

In this case, the month with the highest temperature
(45.7 degrees Celsius) is July, and the program
should display 7.

http://worldclimate.com/

12/22/21, 5:14 PM Lab06-Loops-1 - Jupyter Notebook

localhost:8888/notebooks/6----/Lab06-Loops-1.ipynb 2/13

Step 1: Decide what work must be done inside the loop.
If you can’t figure out what needs to go inside the loop, start by writing down the steps that you would take if you solved the
problem by hand.

12/22/21, 5:14 PM Lab06-Loops-1 - Jupyter Notebook

localhost:8888/notebooks/6----/Lab06-Loops-1.ipynb 3/13

Now look at these steps and reduce them to a set of uniform actions that can be placed into the loop body. The first action is easy:

The next action is trickier. In our description, we used tests “higher than the first”, “higher than the first and second”, and “higher than
the highest temperature seen so far”.
We need to settle on one test that works for all iterations. The last formulation is the most general.
Similarly, we must find a general way of setting the highest month. We need a variable that stores the current month, running from 1
to 12. Then we can formulate the second loop action:

Now the loop becomes

12/22/21, 5:14 PM Lab06-Loops-1 - Jupyter Notebook

localhost:8888/notebooks/6----/Lab06-Loops-1.ipynb 4/13

Step 2: Specify the loop condition. What is the condition of the loop?

current month <= 12

Step 3: Determine the loop type. Which is more suitable, a while loop or a for loop?

A for loop is more suitable, since we know exactly how many iterations to perform.

Step 4: Set up variables for entering the loop for the first time.

12/22/21, 5:14 PM Lab06-Loops-1 - Jupyter Notebook

localhost:8888/notebooks/6----/Lab06-Loops-1.ipynb 5/13

Step 5: Process the result after the loop has finished.

In our case, the result is the highest month.

The complete pseudo code is as follows: Step 6: Trace the loop with typical examples.

Note that there is no need to scratch the values out,
as the textbook suggests, if you follow the convention
that the last value of each column/variable in the
table is the current value of that variable, you won't
need to scratch anything out.

Step 7: Translate the pseudo code into Python.

12/22/21, 5:14 PM Lab06-Loops-1 - Jupyter Notebook

localhost:8888/notebooks/6----/Lab06-Loops-1.ipynb 6/13

In [21]:

4 Side Note Regarding the print Function
The print function displays an end of line by default.
If we want to change this behavior, we can set the end parameter to another string.

The default value of the end parameter is \n.
Consider the following example

Enter a value: 18.2

Enter a value: 22.6

Enter a value: 26.4

Enter a value: 31.3

Enter a value: 36.6

Enter a value: 42.2

Enter a value: 45.7

Enter a value: 44.5

Enter a value: 40.2

Enter a value: 33.1

Enter a value: 24.2

Enter a value: 17.6

7 was the highest month, with record temperature of 45.7 degrees Celsius

This program reads 12 temperature values corresponding to the 12 months of the year (starting at 1),
and then prints the month with the highest temperature.
#
highestValue = float(input("Enter a value: ")) # Read the temperatrue for January
highestMonth = 1 # This indicates January
for currentMonth in range(2, 13) : # Iterate for months 2, 3, 4, ..., 12 (December)
 nextValue = float(input("Enter a value: ")) # Read the temperature of the next month.
 if nextValue > highestValue : # Check whether it is higher than the highest
 highestValue = nextValue # It is higher, so update the highest value
 highestMonth = currentMonth # Correspondingly, update the highest month
​
Print the highest month
print(str(highestMonth) + " was the highest month, with record temperature of "+ str(highestValue) + " degre
​

1
2
3
4
5
6
7
8
9

10
11
12
13
14

12/22/21, 5:14 PM Lab06-Loops-1 - Jupyter Notebook

localhost:8888/notebooks/6----/Lab06-Loops-1.ipynb 7/13

In [22]:

5 Exercises

Exercise # 1: Write a while loop that prints all squares less than an input integer value n. For example, if the user enters 100, the
program shall print

0 1 4 9 16 25 36 49 64 81.

The following are sample runs of the program.

ICS 104@KFUPM

First-second

course = "ICS 104"
University = "KFUPM"
print(course,end="@")
print(University)
print("First","second",sep="-")

1
2
3
4
5

12/22/21, 5:14 PM Lab06-Loops-1 - Jupyter Notebook

localhost:8888/notebooks/6----/Lab06-Loops-1.ipynb 8/13

In [1]:

5.1 Exercise # 2:
Write a loop that reads positive numbers from the user and sum them. The loop continues till a negative number is entered. Your program
then prints the result. If the user enter a negative value from the beginning, your code should display

'No positive number was entered'.

The following are sample runs of the program.

Sample run 1:

Enter a positive number: (or a negative value to finish):5

Enter a positive number: (or a negative value to finish):2

Enter a positive number: (or a negative value to finish):

Enter a positive number: (or a negative value to finish):4

Enter a positive number: (or a negative value to finish):-5

Sum = 11.0

Sample run 2:

Enter a positive number: (or a negative value to finish):-8

No positive number was entered.

Note that the 3rd input in sample run 1 is 'Enter' key which does not stop the loop. You should include the empty string in your loop
condition.

Enter a positive integer value: 34

0 1 4 9 16 25

YOUR CODE HERE
​
from math import *
​
num = int(input("Enter a positive integer value: "))
squares = 0
​
while squares < num:
 if sqrt(squares) % 1 == 0:
 print(squares//1, end=" ")
 squares += 1

1
2
3
4
5
6
7
8
9

10
11

12/22/21, 5:14 PM Lab06-Loops-1 - Jupyter Notebook

localhost:8888/notebooks/6----/Lab06-Loops-1.ipynb 9/13

In [2]:

5.2 Exercise # 3:
Using for loop, write a python program that reads an integer from the user and prints back the number of the digits in that integer and the
sum of them. For example, if the input was 2308 , the output would be: Your integer has 4 digits and their sum is 13.

Hint: take your input as a string and use for loop to get the digits.

The following are sample runs of the program:

Enter a positive number: (or a negative value to finish):5

Enter a positive number: (or a negative value to finish):2

Enter a positive number: (or a negative value to finish):

Enter a positive number: (or a negative value to finish):4

Enter a positive number: (or a negative value to finish):-5

Sum = 11.0

YOUR CODE HERE
​
total = 0
​
num = input("Enter a positive number: (or a negative value to finish):")
if num == "":
 num = 0
else:
 num = float(num)

if num < 0:
 print("No positive number was entered.")

else:
 while num >= 0:
 total = total + num
 num = input("Enter a positive number: (or a negative value to finish):")
 if num == "":
 num = 0
 else:
 num = float(num)
 print("Sum =", total)

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22

12/22/21, 5:14 PM Lab06-Loops-1 - Jupyter Notebook

localhost:8888/notebooks/6----/Lab06-Loops-1.ipynb 10/13

Sample run 1:*

Enter a positive integer value: 2308
Your integer has 4 digits and their sum is 13

Sample run 2:*

Enter a positive integer value: 714702

Your integer has 6 digits and their sum is 21

In [3]:

Exercise # 4: Write a python program that prompts for and reads the number of spheres to be processed. If your program
must display an error message and terminate; otherwise it does the following for times:

Prompts for and reads the volume of a sphere, it then displays the surface area of the sphere with that volume. Assume that
each volume is in cubic centimeters.

The program finally displays the average of the surface areas of the spheres.
Please note that

volume .

surface area .
The following are sample runs of the program.

𝑛 𝑛 ≤ 0

𝑛

𝑛

= 𝜋
4

3
𝑟
3

= 4𝜋𝑟
2

Enter a positive integer value: 2308

Your integer has 4 digits and their sum is 13

YOUR CODE HERE
​
total = 0
​
integer = input("Enter a positive integer value: ")
digits = len(integer)
​
for i in integer:
 i = int(i)
 total += i

print("Your integer has", digits, "digits and their sum is", total)

1
2
3
4
5
6
7
8
9

10
11
12

12/22/21, 5:14 PM Lab06-Loops-1 - Jupyter Notebook

localhost:8888/notebooks/6----/Lab06-Loops-1.ipynb 11/13

12/22/21, 5:14 PM Lab06-Loops-1 - Jupyter Notebook

localhost:8888/notebooks/6----/Lab06-Loops-1.ipynb 12/13

In [4]:

6 End of the Loops - Lab 1
Good luck...

Enter number of spheres to be processed: 3

Enter volume of sphere 1: 15

Sphere #1 surface area= 29.41

Enter volume of sphere 2: 27

Sphere #2 surface area= 43.52

Enter volume of sphere 3: 9

Sphere #3 surface area= 20.92

The average surface area = 31.29

YOUR CODE HERE
​
from math import pi
​
num = float(input("Enter number of spheres to be processed: "))
​
if num > 0 and num.is_integer():
 num = int(num)
 totalSurface = 0
 count = 0

 for x in range(0,num):
 x = str(x+1)

 volume = float(input("Enter volume of sphere "+x+": "))
 radius = ((3 * volume) / (4 * pi)) ** (1/3)
 surfaceArea = 4 * pi * (radius ** 2)
 print("Sphere #"+x+" surface area= %0.2f" % surfaceArea)
 totalSurface = totalSurface + surfaceArea
 count = count + 1
 averageSurface = totalSurface / count
 print("The average surface area = %0.2f" %averageSurface)
else:
 print("numbers of sphere must be > 0 ")

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

12/22/21, 5:14 PM Lab06-Loops-1 - Jupyter Notebook

localhost:8888/notebooks/6----/Lab06-Loops-1.ipynb 13/13

