
12/15/21, 1:19 PM Lab01 - Jupyter Notebook

localhost:8888/notebooks/1/Lab01.ipynb# 1/11

0.0.1 ICS 104 - Introduction to Programming in Python and C

1 Introduction

1.1 Lab Learning Outcomes

Install Jupyter notebook correctly
Use Jupyter notebook to view slides and write code.
Know some common practices in developing Python programs.
Write the first Python programs.

1.2 Introduction to Jupyter Notebook
Please note that information in this lab is mainly taken from

https://realpython.com/jupyter-notebook-introduction/ (https://realpython.com/jupyter-notebook-introduction/)
https://www.tutorialspoint.com/jupyter/jupyter_notebook_types_of_cells.htm
(https://www.tutorialspoint.com/jupyter/jupyter_notebook_types_of_cells.htm)
https://vegibit.com/jupyter-notebook-modes/ (https://vegibit.com/jupyter-notebook-modes/)

The Jupyter Notebook is an open source web application that you can use to create and share documents that contain live code,
equations, visualizations, and text. Jupyter Notebook is maintained by the people at Project Jupyter.
The name Jupyter comes from the core supported programming languages that it supports: Julia, Python, and R (of course, an e
was added before R).
Jupyter ships with the IPython kernel, which allows you to write your programs in Python.

1.2.1 Creating a Notebook
After you start a Jupyter notebook, click on the New button (upper right), and it will open up a list of choices. Choose Python 3.
A web page is created that may look like this:

https://realpython.com/jupyter-notebook-introduction/
https://www.tutorialspoint.com/jupyter/jupyter_notebook_types_of_cells.htm
https://vegibit.com/jupyter-notebook-modes/

12/15/21, 1:19 PM Lab01 - Jupyter Notebook

localhost:8888/notebooks/1/Lab01.ipynb# 2/11

Now, go to View in the tool bar, click on Cell Toolbar and choose Slide Show. This will add a Slide Type at the upper right corner of
each cell, which determines the type of slide it is. If you are interested in more information about this, please consult
https://www.dev2qa.com/how-to-create-slideshow-from-jupyter-notebook/ (https://www.dev2qa.com/how-to-create-slideshow-from-
jupyter-notebook/). You may need this only if you are planning to produce slides using Jupyter.

Note that if you want to create more cells, you can press the + button at the upper left.

1.2.2 Naming a Notebook
At the top of the page, there is the word Untitled. This is the title for the page and the name of your Notebook.
To change the name of your notebook, move your mouse over the word Untitled and click on the text.
You should now see an in-browser dialog titled Rename Notebook.
Rename it to Hello Jupyter

https://www.dev2qa.com/how-to-create-slideshow-from-jupyter-notebook/

12/15/21, 1:19 PM Lab01 - Jupyter Notebook

localhost:8888/notebooks/1/Lab01.ipynb# 3/11

1.3 Cell Modes in Jupyter Notebook
Cells in Jupyter Notebook have two modes

Edit Mode
If the cell has a green border, that means you’re in Edit mode.
Edit mode is for all the actions you would usually perform in the context of a single cell.
For example, editing and typing your code and text.

Command Mode
If the cell has a blue border, then you’re in Command mode.
Command mode is for doing things outside the scope of any individual cell, often applying actions to multiple cells at once.
For example, you can select multiple cells, copy them, and paste them, or delete them if you like.

One can get into Edit mode by pressing the < Enter > button or by double clicking on the cell. Pressing the Escape button will exit
the Edit mode to become in Command mode.

1.4 Cell Types
Code Cells

Contents in this cell are treated as statements in a programming language of the current kernel, in our case Python 3.
When such cell is run, its result is displayed in an output cell.
The output may be text, image, matplotlib plots or HTML tables.

Markdown Cells
These cells contain text formatted using markdown language.
All kinds of formatting features are available like

making text bold (putting words between two **)
making text italic (putting words between two *)
displaying a heading (starting the line with a # followed by a blank)
displaying a subheading (starting the line with a ## followed by a blank)
displaying a subsubheading (starting the line with a ### followed by a blank)
displaying unordered list (starting the line with a hyphen - followed by a blank)
... etc.

Markdown cells are especially useful to provide documentation to the computational process of the notebook.
For more information on Markdown, visit https://guides.github.com/features/mastering-markdown/
(https://guides.github.com/features/mastering-markdown/)

https://guides.github.com/features/mastering-markdown/

12/15/21, 1:19 PM Lab01 - Jupyter Notebook

localhost:8888/notebooks/1/Lab01.ipynb# 4/11

Raw Cells
Contents in raw cells are not evaluated by notebook kernel, that is why it is better to use Markdown.

1.5 Changing Cell Types
Changing the type of a cell can be accomplished through the tool bar at the top of the notebook, choosing the desired cell type from
the drop-down menu.

Alternatively, while in a cell in command mode,
pressing the letter y will make the cell of type Code.
pressing the letter m will make the cell of type Markdown.

Note that new cells are of type Code, by default, when they are created.

2 Displaying Jupyter Notebook as a Presentation
If you press the bar chart button, circled below, the notebook will be displayed as presentation.

12/15/21, 1:19 PM Lab01 - Jupyter Notebook

localhost:8888/notebooks/1/Lab01.ipynb# 5/11

If you want to go outside the presentation mode, you can press the X at the upper left of the presentation.

12/15/21, 1:19 PM Lab01 - Jupyter Notebook

localhost:8888/notebooks/1/Lab01.ipynb# 6/11

2.1 Handling Code Cells

12/15/21, 1:19 PM Lab01 - Jupyter Notebook

localhost:8888/notebooks/1/Lab01.ipynb# 7/11

In order to run a cell containing code, press < Shift >+< Enter > buttons simultaneously.
In order to clear the output, go to Cell at the tool bar, then choose Current Outputs, then choose Clear.
In order to save the contents of a cell in a file called filename.py,

add the following line as the first line in the cell (before all your code)

%%writefile filename.py
Now, if you press < Shift >+< Enter > buttons simultaneously, it will save the contents of the cell, instead of compiling and
running the code in the cell.

For example, go ahead and save the contents of the following cell in a file called myFirstProgram.py .
Note that if you want to run the code, you can simply comment the first line (or remove it).

In [3]:

3 Some Common Practices and Notes
When writing python statements, one can

write each statement in a single line as follows

In [2]:

write multiple statements separated by semi colon(s) in one line as follows

4

Out[2]: 3

#%%writefile myFirstProgram.py
a = 1
b = 3
print(a+b)

Statements at different lines
a = 1
b = 2
a + b
​

1
2
3
4

1
2
3
4
5

12/15/21, 1:19 PM Lab01 - Jupyter Notebook

localhost:8888/notebooks/1/Lab01.ipynb# 8/11

In [1]:

use another cell for computing the results (make sure you note the last cell that was executed).

It is good to execute a far away cell and then execute the last cell, to show that the order to execution is the most important factor,
not the physical location in the jupyter notebook.

In [1]:

In [3]:

determine the type of a variable (we will know about variables later)

In [4]:

In [6]:

Out[1]: 200

Out[1]: 15

Out[3]: 9

12

Out[4]: int

4.0

Out[6]: float

Statements on the same line
a = 10; b = 20; a * b

a = 12
b = 3
a+b

a - b

print(a)
type(a)

c = a / b
print(c)
type (c)

1
2

1
2
3

1

1
2

1
2
3

12/15/21, 1:19 PM Lab01 - Jupyter Notebook

localhost:8888/notebooks/1/Lab01.ipynb# 9/11

In [8]:

4 Task 1: Playing with Markdown
Copy the contents of the text file MarkDownExample.txt into a Markdown cell. Note the different colors for different types of lines.
Press the < Shift >+< Enter > buttons simultaneously, you should now see it rendered, based on the line type.
Double click on the cell to go back to Markdown text.

5 Cell Types
Code Cells

Contents in this cell are treated as statements in a programming language of the current kernel, in our case Python 3.
When such cell is run, its result is displayed in an output cell.
The output may be text, image, matplotlib plots or HTML tables.

Markdown Cells
These cells contain text formatted using markdown language.
All kinds of formatting features are available like

making text bold (putting words between two **)
making text italic (putting words between two *)
displaying a heading (starting the line with a #)
displaying a subheading (starting the line with a ##)
displaying a subsubheading (starting the line with a ###)
displaying unordered list (starting the line with a hyphen -)
... etc.

Markdown cells are especially useful to provide documentation to the computational process of the notebook.

<class 'int'>

<class 'int'>

3.0

3

4.166666666666667

print(type(12))
print(type(3))
print(12/4)
print(12//4)
print(12.5/3)

1
2
3
4
5

12/15/21, 1:19 PM Lab01 - Jupyter Notebook

localhost:8888/notebooks/1/Lab01.ipynb# 10/11

For more information on Markdown, visit https://guides.github.com/features/mastering-markdown/
(https://guides.github.com/features/mastering-markdown/)

Raw Cells
Contents in raw cells are not evaluated by notebook kernel, that is why it is better to use Markdown.

6 Task 2: From Celsius to Fahrenheit
Assign a value to a temperature in Celsius, and find and display its equivalent temperature in Fahrenheit according to the formula:

𝐹𝑎ℎ𝑟𝑒𝑛ℎ𝑒𝑖𝑡 = 32 + ∗ 𝐶𝑒𝑙𝑠𝑖𝑢𝑠
9

5

In [6]:

7 Task 3: Finding the Area and Circumference of a Circle
Assign a value to a radius of a circle, then find and display its area and circumference using the following formulas

where

𝐴𝑟𝑒𝑎 = 𝑝𝑖 ∗ 𝑟𝑎𝑑𝑖𝑢𝑠 ∗ 𝑟𝑎𝑑𝑖𝑢𝑠

𝑐𝑖𝑟𝑐𝑢𝑚𝑓𝑒𝑟𝑒𝑛𝑐𝑒 = 2 ∗ 𝑝𝑖 ∗ 𝑟𝑎𝑑𝑖𝑢𝑠

𝑝𝑖 = 3.14159

Fahrenheit = 212.0

#%%writefile Lab01Task2.py
Uncomment the above line after you finish your code and want to save it in a file.
​
Setting the Celsius value first
Celsius = 100
​
Write your code below this line
print("Fahrenheit =" , 32 + 9/5 * Celsius)

1
2
3
4
5
6
7
8

https://guides.github.com/features/mastering-markdown/

12/15/21, 1:19 PM Lab01 - Jupyter Notebook

localhost:8888/notebooks/1/Lab01.ipynb# 11/11

In [15]:

Area = 333.29128310000004

circumference = 64.71675400000001

#%%writefile Lab01Task3.py
Uncomment the above line after you finish your code and want to save it in a file.
​
Defining the constant PI
PI = 3.14159
​
Setting the value of the radius
radius = 10.3
​
Write your code below this line
print("Area =" , PI * (radius **2))
print("circumference =" , 2*PI*radius)
​

1
2
3
4
5
6
7
8
9

10
11
12
13

