
12/22/21, 5:28 PM Lab10-Files-Exceptions - Jupyter Notebook

localhost:8888/notebooks/10-----/Lab10-Files-Exceptions.ipynb 1/11

1 ICS 104 - Introduction to Programming in Python and C

1.1 Files and Exceptions - Lab

2 Lab Objectives
To read and write text files
To process collections of data
To raise and handle exceptions

3 Worked Example
Problem Statement Read two country data files, Lab10_worldpop.txt and Lab10_worldarea.txt . Both files contain the same
countries in the same order. Write a file Lab10_world_pop_density.txt that contains country names and population densities
(people per square km), with the country names aligned left and the numbers aligned right.

12/22/21, 5:28 PM Lab10-Files-Exceptions - Jupyter Notebook

localhost:8888/notebooks/10-----/Lab10-Files-Exceptions.ipynb 2/11

Step 1: Understand the processing task
We need to read each file, line by line, and then compute the density (The countries are stored in the same order).

12/22/21, 5:28 PM Lab10-Files-Exceptions - Jupyter Notebook

localhost:8888/notebooks/10-----/Lab10-Files-Exceptions.ipynb 3/11

Step 2: Determine which files you need to read and write.

Input Files: Lab10_worldpop.txt and Lab10_worldarea.txt
Output Files: Lab10_world_pop_density.txt

Step 3: Choose a mechanism for obtaining the file names.
Hard-coding the filenames.

filename = "Lab10_worldpop.txt"

Asking the user for inputting the filename.

filename = input("Enter filename: ")

Hard-coded file names are included for simplicity.

Step 4: Choose between iterating over the file or reading individual lines.
We will read individual lines using a while loop.

Step 5: Extract the required data.

Step 6: Use functions to factor out common tasks.
Because both input files have the same format, the name of the country followed by a value, we can use a single function to extract a
data record.

12/22/21, 5:28 PM Lab10-Files-Exceptions - Jupyter Notebook

localhost:8888/notebooks/10-----/Lab10-Files-Exceptions.ipynb 4/11

In []: ##
This program reads data files of country populations and areas and prints the
population density for each country.
#
​
POPULATION_FILE = "Lab10_worldpop.txt"
AREA_FILE = "Lab10_worldarea.txt"
REPORT_FILE = "Lab10_world_pop_density.txt"
​
def main() :
 # Open the files.
 popFile = open(POPULATION_FILE, "r")
 areaFile = open(AREA_FILE, "r")
 reportFile = open(REPORT_FILE, "w")
​
 # Read the first population data record.
 popData = extractDataRecord(popFile)
 while len(popData) == 2 :
 # Read the next area data record.
 areaData = extractDataRecord(areaFile)
​
 # Extract the data components from the two lists.
 country = popData[0]
 population = popData[1]
 area = areaData[1]
​
 # Compute and print the population density.
 density = 0.0
 if area > 0 : # Protect against division by zero.
 density = population / area
 reportFile.write("%-40s%15.2f\n" % (country, density))
​
 # Read the next population data record.
 popData = extractDataRecord(popFile)
​
 # Close the files.
 popFile.close()
 areaFile.close()
 reportFile.close()

Extracts and returns a record from an input file in which the data is
organized by line. Each line contains the name of a country (possibly

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

12/22/21, 5:28 PM Lab10-Files-Exceptions - Jupyter Notebook

localhost:8888/notebooks/10-----/Lab10-Files-Exceptions.ipynb 5/11

4 Reading the Entire File
There are two methods for reading an entire file.

The call inputFile.read() returns a string with all characters in the file.
The readlines method reads the entire contents of a text file into a list:

inputFile = open("sample.txt", "r")
listOfLines = inputFile.readlines()
inputFile.close()

Each element in the list returned by the readlines method is a string containing a single line from the file (including the
newline character). Only the last line does not contain the newline character.

5 Exercises

5.1 Exercise # 1:
Write a program that reads from an input file and uses the following function to look for palindrome words.

containing multiple words) followed by an integer (either population
or area for the given country).
@param infile the input text file containing the line oriented data
@return a list containing the country (string) in the first element
and the population (int) or area (int) in the second element. If the end of
file was reached, an empty list is returned.
#
def extractDataRecord(infile) :
 line = infile.readline()
 if line == "" :
 return []
 else :
 parts = line.rsplit(" ", 1)
 parts[1] = int(parts[1])
 return parts

Start the program.
main()

43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

12/22/21, 5:28 PM Lab10-Files-Exceptions - Jupyter Notebook

localhost:8888/notebooks/10-----/Lab10-Files-Exceptions.ipynb 6/11

def ispalindrome(w):

 return w == w[::-1]

NOTES:

Palindrome word is a word which reads the same backward as forward
ispalindrome() function returns True or False depending on passed word. You should be able to use it even if you don't know how it
works.
Consider words of length 3 and above (i.e "A" should not be checked)
your code output:

Output file containing the palindrome words
A statement on the screen indicating how many palindrome words were found

To check your code, copy the following to your input file:

Any good deed is even better in these days

Every motor has a rotor

Using my kayak at noon was a bad idea
If you use the above three statements in the input file, the output would be:

You have 4 palindrome words

They are stored in a file named: palindrome.txt
Also an output file will be generated containing:

deed

rotor

kayak

noon

12/22/21, 5:28 PM Lab10-Files-Exceptions - Jupyter Notebook

localhost:8888/notebooks/10-----/Lab10-Files-Exceptions.ipynb 7/11

In [1]:

5.2 Exercise # 2:

Write a program that evaluates and prints the result of

. Where a should be less than 100. Your code should report error messages using try except block.

NOTES:

You should use try and except in your code
The ZeroDivisionError exception will be generated automatically when trying to divide by 0
The ValueError exception will take place in two cases:

Automatically when trying to find the square root of a negative number

𝑎√
𝑏

You have 4 palindrome words

They are stored in a file named: palindrome.txt

YOUR CODE HERE
​
TEXT_FILE = "input.txt"
PALINDROME_FILE = "palindrome.txt"
def main():
 counter = 0
 textFile = open(TEXT_FILE, "r")
 palindromeFile = open(PALINDROME_FILE, "w")
 for line in textFile:
 wordList = line.split()
 for word in wordList:
 if ispalindrome(word):
 if len(word) >= 3:
 palindromeFile.write("%s \n" %word)
 counter += 1
 print("You have",counter,"palindrome words")
 print("They are stored in a file named: palindrome.txt")
 textFile.close()
 palindromeFile.close()

def ispalindrome(w):
 return w == w[::-1]
​
main()

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

12/22/21, 5:28 PM Lab10-Files-Exceptions - Jupyter Notebook

localhost:8888/notebooks/10-----/Lab10-Files-Exceptions.ipynb 8/11

manually when a>100 (using raise with if statement)

The if statement in the previous point should be the only if statement in your code
Sample runs are shown below:

12/22/21, 5:28 PM Lab10-Files-Exceptions - Jupyter Notebook

localhost:8888/notebooks/10-----/Lab10-Files-Exceptions.ipynb 9/11

In [3]:

5.3 Exercise # 3:
Each line of a text-file scores.txt contains the ID of a student and his grades in 4 exams. Write a python program that reads grades.txt and
writes to an output file output.txt the ID , the worst exam grade, the best exam grade and the average grade for each student. You have to
use a dictionary with ids as key.

Also display the dictionary on the screen as shown below.

{'201100010': [82.5, 75.0, 95.0], '201100020': [43.75, 30.0, 50.0], '201100030': [93.0, 90.0, 97.0], '2
01100040': [72.5, 60.0, 80.0], '201100050': [63.0, 60.0, 70.0]}

enter the value of a 55.5

enter the value of b 0

The value of b can not be 0

YOUR CODE HERE
​
try:
 from math import sqrt
 a = float(input("enter the value of a "))
 b = float(input("enter the value of b "))
 c = sqrt(a)/b

 if a > 100:
 raise ValueError
 print("The result is %.2f " %c)

except ZeroDivisionError:
 print("The value of b can not be 0")

except ValueError:
 print("The value of a should be non_negative and below 100")

contents of output file
 ID AVG MIN MAX
 201100010 82.50 75.00 95.00
 201100020 43.75 30.00 50.00
 201100030 93.00 90.00 97.00
 201100040 72.50 60.00 80.00
 201100050 63.00 60.00 70.00

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

1
2
3
4
5
6
7

12/22/21, 5:28 PM Lab10-Files-Exceptions - Jupyter Notebook

localhost:8888/notebooks/10-----/Lab10-Files-Exceptions.ipynb 10/11

In [4]:

{'201100010': [82.5, 75.0, 95.0], '201100020': [43.75, 30.0, 50.0], '201100030': [93.0, 90.0, 97.0], '20110004
0': [72.5, 60.0, 80.0], '201100050': [63.0, 60.0, 70.0]}

YOUR CODE HERE
​
textFile = open("scores.txt", "r")
scores = {}
for line in textFile:
 wordList = line.split()
 counter = 0
 for words in wordList:
 if counter == 0:
 wordList.pop(0)
 scores[words] = wordList
 counter += 1
outputFile = open("sortedscores.txt", "w")
outputFile.write(" ID AVG MIN MAX\n")
for key in scores:
 ID = key
 for i in range(len(scores[key])):
 i = float((scores[key])[0])
 scores[key].pop(0)
 scores[key].append(i)
 average = sum(scores[key])/len(scores[key])
 minimum = min(scores[key])
 maximum = max(scores[key])
 for i in range(len(scores[key])):
 scores[key].pop(0)
 scores[key].append(average)
 scores[key].append(minimum)
 scores[key].append(maximum)
 average = "{:.2f}".format(average)
 minimum = "{:.2f}".format(minimum)
 maximum = "{:.2f}".format(maximum)
 outputFile.write(" {0} {1} {2} {3} \n".format(ID,average,minimum,maximum))
print(scores)
textFile.close()
outputFile.close()

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

12/22/21, 5:28 PM Lab10-Files-Exceptions - Jupyter Notebook

localhost:8888/notebooks/10-----/Lab10-Files-Exceptions.ipynb 11/11

