12/22/21, 5:24 PM Lab09-ListsTuplesAndDictionaries - Jupyter Notebook

1 ICS 104 - Introduction to Programming in Python and C

1.1 Lists, Tuples and Dictionaries

2 Lab Objectives

» To be familiar with common functions, operators and methods used with lists
» To implement algorithms using lists and sets.
» To structure programs using functions.

3 Common Functions and Operators Used with Lists

Operation Description

[[from : to] Creates a sublist from a subsequence of elements in list /
starting at position from and going through but not
including the element at position to. Both fromand to are
optional. (See Special Topic 6.2.)

sum(/) Computes the sum of the values in list L

min(/) Returns the minimum or maximum value in list /.

max (/)

I =1, Tests whether two lists have the same elements, in the
same order.

localhost:8888/notebooks/9----/Lab09-ListsTuplesAndDictionaries.ipynb 1/15

12/22/21, 5:24 PM

Lab09-ListsTuplesAndDictionaries - Jupyter Notebook

4 Common List Methods

Method
[.popO)
[.pop(position)
[.insert(position, element)
[.append(element)

[.index(element)

[.remove (element)

[.sort()

5 Worked Example

Description

Removes the last element from the list or from the given
position. All elements following the given position are
moved up one place.

Inserts the element at the given position in the list. All
elements at and following the given position are
moved down.

Appends the element to the end of the list.

Returns the position of the given element in the list.
The element must be in the list.

Removes the given element from the list and moves all
elements following it up one position.

Sorts the elements in the list from smallest to largest.

« Problem Statement: A final quiz score is computed by adding all the scores, except for the lowest two.
= For example, if the scores are 8 4 7 8.5 9.5 7 5 10, then the final score is 50.
» Write a program to compute a final score in this way.

localhost:8888/notebooks/9----/Lab09-ListsTuplesAndDictionaries.ipynb

2/15

12/22/21, 5:24 PM

Lab09-ListsTuplesAndDictionaries - Jupyter Notebook

» Step 1: Decompose your task into steps (What needs to be done).

« = Read the data into a list.
= Process the data in one or more steps.

o

o

o

Remove the minimum.
Remove the minimum again.
Calculate the sum.

= Display the results.

« Step 2: Determine which algorithms you need. (How are you going to achieve these steps)

For finding the minimum,

= You can either write code for that, or use the built-in functions and methods.

Step 3: Use functions to structure the program
Obviously, we need two functions:

= A function to read the input (readFloats)
= A function to find the minimum and remove it from the list (removeMinimum)
= A main function that will call the above ones and solve the problem.

o

o

o

o

o

scores = readFloats()
removeMinimum(scores)
removeMinimum(scores)
total = sum(scores)
print("Final score:", total)

» Step 4: Develop test cases for the program.
= Think of all different scenarios.
= This will help you during the implementation of the program.

localhost:8888/notebooks/9----/Lab09-ListsTuplesAndDictionaries.ipynb

3/15

12/22/21, 5:24 PM Lab09-ListsTuplesAndDictionaries - Jupyter Notebook

Test Case Expected Output Comment
8478.59.57510 50 See Step 1.
87779 24 Only two instances of the low score should be removed.
8 7 0 After removing the low scores, no score remains.
(no inputs) Error That is not alegal input.

« Step 5: Implement the program.

localhost:8888/notebooks/9----/Lab09-ListsTuplesAndDictionaries.ipynb 4/15

12/22/21, 5:24 PM Lab09-ListsTuplesAndDictionaries - Jupyter Notebook

In [17]: 1 ##
2 # This program computes a final score for a series of quiz scores: the sum after
3 # dropping the two lLowest scores. The program uses a List.
4 #
5
6 def main() :
7 scores = readFloats()
8 if len(scores) > 1
9 removeMinimum(scores)
10 removeMinimum(scores)
11 total = sum(scores)
12 print("Final score:", total)
13 else :
14 print("At least two scores are required.")
15
16 ## Reads a sequence of floating-point numbers.
17 # (@return a list containing the numbers
18 #
19 def readFloats() :
20 # Create an empty Llist.
21 values = []
22
23 # Read the 1input values into a Llist.
24 print("Please enter values, Q to quit:")
25 userInput = input("")
26 while userInput.upper() != "Q" :
27 values.append(float(userInput))
28 userInput = input("")
29
30 return values
31
32 ## Removes the minimum value from a List.
33 # (@param values a Llist of size >= 1
34 #
35 def removeMinimum(values) :
36 smallestPosition = ©
37 for i in range(1, len(values)) :
38 if values[i] < values[smallestPosition] :
39 smallestPosition = i
40
41 values.pop(smallestPosition)
42

localhost:8888/notebooks/9----/Lab09-ListsTuplesAndDictionaries.ipynb 5/15

12/22/21, 5:24 PM Lab09-ListsTuplesAndDictionaries - Jupyter Notebook

43 # Start the program.
44 main()
Please enter values, Q to quit:

U1 WO B
vl U

10

q
Final score: 50.0

6 EXxcercises

» Excercise # 1 Write a program that generates a sequence of 20 random values between 0 and 99 in a list, prints the sequence,
sorts it, and prints the sorted sequence. Use the list sort method. Make sure that you use functions in your solution, including a
main function.

« Following is a sample run

original sequence:

[28, 46, 31, 75, 20, 7, 9, 89, 9, 88, 6, 80, 37, 54, 11, 58, 12, 72, 55, 96]
sorted sequence:

(6, 7, 9, 9, 11, 12, 2o, 28, 31, 37, 46, 54, 55, 58, 72, 75, 80, 88, 89, 96]

localhost:8888/notebooks/9----/Lab09-ListsTuplesAndDictionaries.ipynb 6/15

12/22/21, 5:24 PM Lab09-ListsTuplesAndDictionaries - Jupyter Notebook

In [5]: 1 # Exercise # 1 - Source Code
2
3 from random import randint
4 def main():
5 lists = randomList()
6 sortedList(lists)
7
8 def randomList():
9 originalSequence = []
10 for i in range(20):
11 originalSequence.append(randint(9,99))
12 print("original sequence:")
13 print(originalSequence)
14 return originalSequence
15
16 def sortedList(randList):
17 randList.sort()
18 print("sorted sequence:")
19 print(randList)
20
21
22 main()

original sequence:

[1, 91, 26, 80, 97, 6, 34, 44, 52, 92, 33, 21, 96, 64, 12, 91, 76, 72, 94, 29]
sorted sequence:

[1, 6, 12, 21, 26, 29, 33, 34, 44, 52, 64, 72, 76, 80, 91, 91, 92, 94, 96, 97]

« Excercise # 2 Write a program that reads a sequence of input values and displays a bar chart of the values, using asterisks, like
this:

>k >k 5k 5k >k >k 5k %k >k >k ok %k >k %k ok ok >k k %k %k k ok

3k >k 3k 3k >k >k 3k 3k >k >k 3k %k >k %k 3k 5k >k %k 5k 5k >k %k 5k 3k >k %k 5k 3k %k %k 5k %k %k %k %k %k %k kK %k
>k 3k 3k 3k >k 3k >k 3k >k 3k >k 3k >k 5k >k 3k >k 3k %k 3k >k 5k %k %k %k %k %k

>k >k 5k 5k >k >k 5k 5k >k >k 5k %k >k %k 5k %k >k %k 5k %k >k %k %k %k k %

3k K 3 3k %k K 3k %k %k % K %k k %

localhost:8888/notebooks/9----/Lab09-ListsTuplesAndDictionaries.ipynb 7115

12/22/21, 5:24 PM Lab09-ListsTuplesAndDictionaries - Jupyter Notebook

« You may assume that all values are positive. You will keep reading input until the letter Q is entered. In order to solve this problem,
you need to first figure out the maximum value. That value’s bar should be drawn with 40 asterisks. Shorter bars should use
proportionally fewer asterisks.

» Make sure that you use functions in your solution, including a main function.

» Following are some sample runs

Please enter positive values, followed by Q to quit:
4

W O = WO 00

q

¥ s ok s sk o ok ok ok o ok of ok ok ok K ok

s ok sk sk sk o ok sk ok sk ok ok ok sk sk sk ok sk ok ok sk sk ok ok sk ok ok ok ok ok ok ok ok ok ok

S ke sk s sk ok ok ok ok s ok ok ok ok ok sk ok ok ok sk sk sk ok ok sk ok ok sk ok ok sk ok ok ok o ok ook ok ok
* o % ok

S ok sk sk ok ok ok ok ok ok ok ok ok ok ok sk o ok ok ok ok ok ok ok ok ok

¥ o sk s ok ok ok ok ok ok ok ok ok

localhost:8888/notebooks/9----/Lab09-ListsTuplesAndDictionaries.ipynb 8/15

12/22/21, 5:24 PM Lab09-ListsTuplesAndDictionaries - Jupyter Notebook

Please enter positive values, followed by Q to quit:

H O~ Wwm P wN

(%)
q

A e e e

Fe o o e o ok ok ok

e R L E R EEEE E XS

A ok o e o A e A ok ok ok ok ok ke ok ok

e R R E R E R R R R

R L L R E R R RS

A ok o o ok A A A ok ke kR A ok sk ok ok o sk ok e ok ok ke ok ok ok ke ok

R R R L EE R R E R R

e R i E R R E R EEEEEE R E AR EE EEE AT
Fedde ke ke ek sk ckkk ek ke ke kR ek sk

localhost:8888/notebooks/9----/Lab09-ListsTuplesAndDictionaries.ipynb 9/15

12/22/21, 5:24 PM Lab09-ListsTuplesAndDictionaries - Jupyter Notebook

Please enter positive values, followed by Q to quit:
5

6
4

Q

LEEEEEEEEEEEEEEEEEEESETEEEEEESE T
e e R E R R R R
R R AR R E R E L E E L EEE SR E LR

Please enter positive values, followed by Q to quit:
2

Q

Fekdkk ke kR ek ek ks ke kR ek kg

Please enter positive values, followed by Q to quit:
1

2
9

R R R EE EEE L L L EEE LR

Fedkk ke ke kR ke kR ek e e sk sk ek ko

localhost:8888/notebooks/9----/Lab09-ListsTuplesAndDictionaries.ipynb 10/15

12/22/21, 5:24 PM Lab09-ListsTuplesAndDictionaries - Jupyter Notebook

In [6]: 1 # Exercise # 2 - Source Code

2

3 def main():

4 userNumbers = enteredValues()

5 maxValue = maximumValue(userNumbers)

6 userNumbers = proportionList(maxValue,userNumbers)
7 asteriks(userNumbers)

8

9 def enteredvValues():

10 values = []

11 userInput = ©

12 while userInput != "Q" and userInput != "q":
13 userInput = input("Please enter positive values, followed by Q to quit ")
14 if userInput != "Q" and userInput != "q":
15 values.append(int(userInput))

16 return values
17
18 def maximumValue(lists):
19 maximum = max(lists)
20 return maximum
21
22 def proportionList(maximum,lists):
23 for i in range(len(lists)):
24 lists.append(int((40/maximum*(1lists[0]))))
25 lists.pop(0)
26 return lists
27
28 def asteriks(lists):
29 for i in range(len(lists)):
30 print("*"*(lists[i]))
31
32 main()

Please enter positive values, followed by Q to quit 1
Please enter positive values, followed by Q to quit 2

Please enter positive values, followed by Q to quit g
>k 3k 3k 3k >k 3k 3k >k >k 3k 5k %k K 3k %k >k kK k %k k

3k 3k 3k 3k 3k 3k 3k 3k 5k 3k 3k 3k 5k 3k 3k 3k 5k 3k 5k 3k 5k 3k 3k 3k 3k >k 3k >k 3k >k 5k >k 3k >k 5k >k 3k k 5k k

» Excercise # 3 A supermarket wants to reward its best customer of each day, showing the customer’s name on a screen in the
supermarket. For that purpose, the customer’s purchase amount is stored in a list and the customer’s name is stored in a

localhost:8888/notebooks/9----/Lab09-ListsTuplesAndDictionaries.ipynb 11/15

12/22/21, 5:24 PM

corresponding list.
» Implement a function nameOfBestCustomer that returns the name of the customer with the largest sale.

Lab09-ListsTuplesAndDictionaries - Jupyter Notebook

def nameOfBestCustomer(sales, customers)

» Write a program that prompts the cashier to enter all prices and names, adds them to two lists, calls the function that you
implemented, and displays the result. Use a price of 0 as a sentinel.

» Make sure that you use functions in your solution, including a main function.

» Following are some sample runs

Enter
Enter
Enter
Enter
Enter
Enter
Enter
Enter
Enter

the
the
the
the
the
the
the
the
the

amount of sale (© to
name of the customer
amount of sale (© to
name of the customer
amount of sale (© to
name of the customer
amount of sale (© to
name of the customer
amount of sale (© to

end): 12

who paid 12.0: Ahmad Salem
end): 14

who paid 14.0: Saleem al-Hilali
end): 20

who paid 20.6: Majid Ahmad
end): 10

who paid 10.0: Mustafa Salem
end): ©

The best customer is Majid Ahmad

Enter the amount of sale (© to end): ©
No Sales Today

localhost:8888/notebooks/9----/Lab09-ListsTuplesAndDictionaries.ipynb

12/15

12/22/21, 5:24 PM Lab09-ListsTuplesAndDictionaries - Jupyter Notebook

In [7]: 1 # Exercise # 3 - Source Code
2
3 count =0
4
5 def main():

6 lists = listsMaker()

7 if count != 0:

8 maxValue = maximumValue(lists)

9 bestCustomer(maxValue,lists)

10

11 def listsMaker():

12 prices = []

13 people = []

14 userInput =1

15 while userInput != "0":

16 userInput = input("Enter the amount of sale (@ to end): ")
17 if userInput != "0":

18 prices.append(int(userInput))

19 userInput = float(userInput)

20 peopleInput = input("Enter the name of the customer who paid %.2f: "%userInput)
21 people.append(peoplelnput)

22 global count

23 count += 1

24 if userInput == "0" and count ==

25 print("No Sales Today")

26 lists = prices + people

27 return lists

28 def maximumValue(lists):

29 maximum = max(lists[@:(len(lists)//2)])
30 return maximum

31 def bestCustomer(maximum,lists):

32 position = lists.index(maximum)

33 customer = lists[position+len(lists)//2]
34 print("The best customer is %s"%customer)
35

36 main()

37

38

Enter the amount of sale (© to end): ©
No Sales Today

localhost:8888/notebooks/9----/Lab09-ListsTuplesAndDictionaries.ipynb 13/15

12/22/21, 5:24 PM Lab09-ListsTuplesAndDictionaries - Jupyter Notebook

r

» Excercise # 4 Implement the sieve of Eratosthenes:
a function for computing prime numbers, known to
the ancient Greeks. Choose an integer n. This
function will compute all prime numbers up to, and
including, n.

= Firstinsert all numbers from 1 to n into a set.

= Then erase all multiples of 2 (except 2); that is,
4,6,8,10,12,

= Erase all multiples of 3, that is, 6, 9, 12, 15,

» Goupto \/ﬁ

» The remaining numbers are all primes.
» Make sure that you use functions in your solution,
including a main function.

» Following are some sample runs

Enter a positive integer: 1
There are no prime numbers up to 1

Enter a positive integer: 9
prime numbers up to 9 are:
[2, 3, 5, 7]

Enter a positive integer: 29

prime numbers up to 29 are:
[2, 3, 5, 7, 11, 13, 17, 19, 23, 29]

localhost:8888/notebooks/9----/Lab09-ListsTuplesAndDictionaries.ipynb

© martin mcelligott/iStockphoto.

14/15

12/22/21, 5:24 PM

In [8]:

Lab09-ListsTuplesAndDictionaries - Jupyter Notebook

Exercise # 4 - Source Code

def

def

prime(a):
Numbers=[]
for i in range(2,a+l):
Numbers.append(i)
if Numbers.index(2)==0 and len(Numbers)==1:
return ""
else:
for k in range(4,len(Numbers)+1,2):
Numbers.remove (k)
for ele in Numbers:
if ele % 3==0 and ele!=3:
Numbers.remove(ele)
for 1 in Numbers:
if round(1 ** 9.5) ** 2 ==
Numbers.remove (1)
return Numbers

main():
askNumbers=int(input("Enter a positive integer: "))
if askNumbers==1:
print("There are no prime numbers up to 1")
else:
k=prime(askNumbers)
print(("Prime numbers up to "+str(askNumbers)+" are: "))
print(k)

main()

Enter a positive integer: 29
Prime numbers up to 29 are:
[2, 3, 5, 7, 11, 13, 17, 19, 23, 29]

localhost:8888/notebooks/9----/Lab09-ListsTuplesAndDictionaries.ipynb

15/15

