
12/15/21, 1:40 PM Lab11-classes-211(1) - Jupyter Notebook

localhost:8888/notebooks/11/Lab11-classes-211(1).ipynb 1/10

1 ICS 104 - Introduction to Programming in Python and C

1.1 Objects and Classes - Lab

2 Lab Objectives
To understand the concepts of classes, objects and encapsulation
To implement instance variables, methods and constructors
To be able to design, implement and test your own classes

3 Worked Example

Problem Statement: Your task is to write a class that simulates a bank account. Customers can deposit and withdraw funds. If
sufficient funds are not available for withdrawal, a $10 overdraft penalty is charged. At the end of the month, interest is added to the
account. The interest rate can vary every month.

Step 1: Get an informal list of the responsibilities of your objects.
The following responsibilities are mentioned in the problem statement:

Deposit funds.
Withdraw funds.
Add interest.

There is a hidden responsibility as well. We need to be able to find out how much money is in the account.
Get balance.

Step 2: Specify the public interface.
To deposit or withdraw money, one needs to know the amount of the deposit or withdrawal:
def deposit (self, amount):

12/15/21, 1:40 PM Lab11-classes-211(1) - Jupyter Notebook

localhost:8888/notebooks/11/Lab11-classes-211(1).ipynb 2/10

def withdraw (self, amount):

To add interest, one needs to know the interest rate
that is to be applied:

def addInterest (self, rate) :
Finally, we have

def getBalance (self) :

Now we move to the constructor. The constructor
should accept the initial balance of the account.
It can be useful to allow for an initial zero balance
using a default argument.

def __init__ (self, initialBalance =
0.0) :

Step 3: Document the public interface:

Step 4: Determine instance variables.
We need to store the bank balance:

self._balance = initialBalance

Do we need to store the interest rate?
No — it varies every month, and is supplied as an argument to addInterest.

What about the withdrawal penalty?
The problem description states that it is a fixed $10, so we need not store it.

If the penalty could vary over time, as is the case with most real bank accounts, we would need to store it somewhere (perhaps in a
Bank object), but it is not our job to model every aspect of the real world.

12/15/21, 1:40 PM Lab11-classes-211(1) - Jupyter Notebook

localhost:8888/notebooks/11/Lab11-classes-211(1).ipynb 3/10

12/15/21, 1:40 PM Lab11-classes-211(1) - Jupyter Notebook

localhost:8888/notebooks/11/Lab11-classes-211(1).ipynb 4/10

In []: ##
This module defines a class that models a bank account.
#
​
A bank account has a balance that can be changed by deposits and withdrawals.
#
class BankAccount :
 ## Constructs a bank account with a given balance.
 # @param initialBalance the initial account balance (default = 0.0)
 #
 def __init__(self, initialBalance = 0.0) :
 self._balance = initialBalance
​
 ## Deposits money into this account.
 # @param amount the amount to deposit
 #
 def deposit(self, amount) :
 self._balance = self._balance + amount
​
 ## Makes a withdrawal from this account, or charges a penalty if
 # sufficient funds are not available.
 # @param amount the amount of the withdrawal
 #
 def withdraw(self, amount) :
 PENALTY = 10.0
 if amount > self._balance :
 self._balance = self._balance - PENALTY
 else :
 self._balance = self._balance - amount
​
 ## Adds interest to this account.
 # @param rate the interest rate in percent
 #
 def addInterest(self, rate) :
 amount = self._balance * rate / 100.0
 self._balance = self._balance + amount
​
 ## Gets the current balance of this account.
 # @return the current balance
 #
 def getBalance(self) :
 return self._balance

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

12/15/21, 1:40 PM Lab11-classes-211(1) - Jupyter Notebook

localhost:8888/notebooks/11/Lab11-classes-211(1).ipynb 5/10

In []:

4 Exercises

4.1 Exercise # 1
Define a class Point that represents a point in plane. The point has and coordinates. Define the following:

A constructor to initialize the , coordinates.
A method translate(self, dx,dy) to translate the point object dx , and dy units in and directions, respectively.
A method distanceTo (self, point2) to return the distance between the point referenced by self and point2 .
getX(self) to return the value of coordinate.
getY(self) to return the value of coordinate

.

Test the above class by:

Creating 2 point objects; one with (3,5) as x,y coordinates; the second with (-10,30) as x,y coordinates.
Move the first point 5.5 units in x direction and -12.5 units in y direction using translate method

Find the distance between the 2 points in their current location using distanceTo method

A Sample output resulting from running the above test class is shown below

2 − 𝐷 𝑥 𝑦

𝑥 𝑦

𝑥 𝑦

𝑥

𝑦

​

##
This program tests the BankAccount class.
#
from bankaccount import BankAccount
​
harrysAccount = BankAccount(1000.0)
harrysAccount.deposit(500.0) # Balance is now $1500
harrysAccount.withdraw(2000.0) # Balance is now $1490
harrysAccount.addInterest(1.0) # Balance is now $1490 + 14.90
print("%.2f" % harrysAccount.getBalance())
print("Expected: 1504.90")
​
​

43
44

1
2
3
4
5
6
7
8
9

10
11
12
13

12/15/21, 1:40 PM Lab11-classes-211(1) - Jupyter Notebook

localhost:8888/notebooks/11/Lab11-classes-211(1).ipynb 6/10

new coordinates of point1= (8.5 , -7.5)

Coordinates of point 2 = (-10.0 , 30.0)

Distance between the 2 points = 41.82

12/15/21, 1:40 PM Lab11-classes-211(1) - Jupyter Notebook

localhost:8888/notebooks/11/Lab11-classes-211(1).ipynb 7/10

In [23]:

4.2 Exercise # 2

New coordinates of point1 = (8.5, -7.5)

Coordinates of point 2 = (-10, 30)

Distance between the 2 points = 41.82

YOUR CODE HERE
​
from math import *
​
def main():
 point1 = Point(3,5)
 point2 = Point(-10,30)
 updatedCoordinates = point1.translate(5.5,-12.5)
 print("New coordinates of point1 = ", updatedCoordinates)
 distance = point1.distanceTo(point2)
 print("Coordinates of point 2 = " , point2._point)
 print("Distance between the 2 points = %.2f" %distance)
​
class Point():
 def __init__(self,initialx = 0.0, initialy = 0.0):
 self._point = (initialx,initialy)

 def translate(self, dx,dy):
 self._point = (self._point[0] + dx, self._point[1] + dy)
 return self._point

 def distanceTo(self, point2):
 distance = sqrt((self._point[0]-point2._point[0])**2 + (self._point[1] - point2._point[1])**2)
 return distance

 def getX(self):
 return self._point[0]

 def getY(self):
 return self._point[1]

main()

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

12/15/21, 1:40 PM Lab11-classes-211(1) - Jupyter Notebook

localhost:8888/notebooks/11/Lab11-classes-211(1).ipynb 8/10

Implement a class Portfolio. This class has two objects, checking and saving, of the type bankAccount that was developed in the
worked example. Initialize the 2 bank accounts with 0 initial balance.

Implement four methods
def deposit (self, amount, account)
def withdraw (self, amount, account)
def transfer (self, amount, account)
def getBalance (self, account)

Here the account string is "S" or "C" for Saving and Checking, respectively. For the deposit or withdraw , it indicates which
account is affected. For a transfer , it indicates the account from which the money is taken; the money is automatically transferred
to the other account.
To test your class:

create one Potfolio object
deposit 10000 in its checking account
transfer 5000 from checking account to saving account
withdraw 2500 from checking account
display the balance of both accounts

A run for the above test program will result in the following output

Saving balance = 5000.0

Checking balance = 2500.0

12/15/21, 1:40 PM Lab11-classes-211(1) - Jupyter Notebook

localhost:8888/notebooks/11/Lab11-classes-211(1).ipynb 9/10

In [24]: def main():
 myAccount = portfolio()
 myAccount.deposit(10000, "C")
 myAccount.transfer(5000, "C")
 myAccount.withdraw(2500, "C")
 print("Saving balance = ", myAccount.getBalance("S"))
 print("Checking Balance = ", myAccount.getBalance("C"))

​
class BankAccount :
​
 def __init__(self, initialBalance = 0.0) :
 self._balance = initialBalance
​
 def deposit(self, amount) :
 self._balance = self._balance + amount
​
 def withdraw(self, amount) :
 PENALTY = 10.0
 if amount > self._balance :
 self._balance = self._balance - PENALTY
 else :
 self._balance = self._balance - amount
​
​
 def addInterest(self, rate) :
 amount = self._balance * rate / 100.0
 self._balance = self._balance + amount

​
 def getBalance(self) :
 return self._balance
​
class portfolio:

 def __init__(self):
 self._savebalance = BankAccount()
 self._checkbalance = BankAccount()
​
 def deposit(self, amount, account):
 if account == "S":
 self._savebalance.deposit(amount)

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

12/15/21, 1:40 PM Lab11-classes-211(1) - Jupyter Notebook

localhost:8888/notebooks/11/Lab11-classes-211(1).ipynb 10/10

Saving balance = 5000.0

Checking Balance = 2500.0

 if account == "C":
 self._checkbalance.deposit(amount)

 def withdraw(self, amount, account):
 if account == "S":
 self._savebalance.withdraw(amount)
 if account == "C":
 self._checkbalance.withdraw(amount)

 def transfer(self, amount, account):
 if account == "S":
 self._savebalance.withdraw(amount)
 self._checkbalance.deposit(amount)
 if account == "C":
 self._checkbalance.withdraw(amount)
 self._savebalance.deposit(amount)

 def getBalance(self, account):
 if account == "S":
 return self._savebalance.getBalance()
 if account == "C":
 return self._checkbalance.getBalance()
​
main()

43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

