
12/22/21, 5:24 PM Lab09-ListsTuplesAndDictionaries - Jupyter Notebook

localhost:8888/notebooks/9----/Lab09-ListsTuplesAndDictionaries.ipynb 1/15

1 ICS 104 - Introduction to Programming in Python and C

1.1 Lists, Tuples and Dictionaries

2 Lab Objectives
To be familiar with common functions, operators and methods used with lists
To implement algorithms using lists and sets.
To structure programs using functions.

3 Common Functions and Operators Used with Lists

12/22/21, 5:24 PM Lab09-ListsTuplesAndDictionaries - Jupyter Notebook

localhost:8888/notebooks/9----/Lab09-ListsTuplesAndDictionaries.ipynb 2/15

4 Common List Methods

5 Worked Example

Problem Statement: A final quiz score is computed by adding all the scores, except
for the lowest two.
For example, if the scores are 8 4 7 8.5 9.5 7 5 10, then the final score is 50.

Write a program to compute a final score in this way.

12/22/21, 5:24 PM Lab09-ListsTuplesAndDictionaries - Jupyter Notebook

localhost:8888/notebooks/9----/Lab09-ListsTuplesAndDictionaries.ipynb 3/15

Step 1: Decompose your task into steps (What needs to be done).

Read the data into a list.
Process the data in one or more steps.

Remove the minimum.
Remove the minimum again.
Calculate the sum.

Display the results.

Step 2: Determine which algorithms you need. (How are you going to achieve these steps)

For finding the minimum,
You can either write code for that, or use the built-in functions and methods.

Step 3: Use functions to structure the program
Obviously, we need two functions:

A function to read the input (readFloats)
A function to find the minimum and remove it from the list (removeMinimum)
A main function that will call the above ones and solve the problem.

scores = readFloats()
removeMinimum(scores)
removeMinimum(scores)
total = sum(scores)
print("Final score:", total)

Step 4: Develop test cases for the program.
Think of all different scenarios.
This will help you during the implementation of the program.

12/22/21, 5:24 PM Lab09-ListsTuplesAndDictionaries - Jupyter Notebook

localhost:8888/notebooks/9----/Lab09-ListsTuplesAndDictionaries.ipynb 4/15

Step 5: Implement the program.

12/22/21, 5:24 PM Lab09-ListsTuplesAndDictionaries - Jupyter Notebook

localhost:8888/notebooks/9----/Lab09-ListsTuplesAndDictionaries.ipynb 5/15

In [17]: ##
This program computes a final score for a series of quiz scores: the sum after
dropping the two lowest scores. The program uses a list.
#
​
def main() :
 scores = readFloats()
 if len(scores) > 1 :
 removeMinimum(scores)
 removeMinimum(scores)
 total = sum(scores)
 print("Final score:", total)
 else :
 print("At least two scores are required.")
​
Reads a sequence of floating-point numbers.
@return a list containing the numbers
#
def readFloats() :
 # Create an empty list.
 values = []

 # Read the input values into a list.
 print("Please enter values, Q to quit:")
 userInput = input("")
 while userInput.upper() != "Q" :
 values.append(float(userInput))
 userInput = input("")

 return values
​
Removes the minimum value from a list.
@param values a list of size >= 1
#
def removeMinimum(values) :
 smallestPosition = 0
 for i in range(1, len(values)) :
 if values[i] < values[smallestPosition] :
 smallestPosition = i

 values.pop(smallestPosition)

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

12/22/21, 5:24 PM Lab09-ListsTuplesAndDictionaries - Jupyter Notebook

localhost:8888/notebooks/9----/Lab09-ListsTuplesAndDictionaries.ipynb 6/15

6 Excercises

Excercise # 1 Write a program that generates a sequence of 20 random values between 0 and 99 in a list, prints the sequence,
sorts it, and prints the sorted sequence. Use the list sort method. Make sure that you use functions in your solution, including a
main function.

Following is a sample run

Please enter values, Q to quit:

8

4

7

8.5

9.5

7

5

10

q

Final score: 50.0

Start the program.
main()

43
44

12/22/21, 5:24 PM Lab09-ListsTuplesAndDictionaries - Jupyter Notebook

localhost:8888/notebooks/9----/Lab09-ListsTuplesAndDictionaries.ipynb 7/15

In [5]:

Excercise # 2 Write a program that reads a sequence of input values and displays a bar chart of the values, using asterisks, like
this:

**

original sequence:

[1, 91, 26, 80, 97, 6, 34, 44, 52, 92, 33, 21, 96, 64, 12, 91, 76, 72, 94, 29]

sorted sequence:

[1, 6, 12, 21, 26, 29, 33, 34, 44, 52, 64, 72, 76, 80, 91, 91, 92, 94, 96, 97]

Exercise # 1 - Source Code
​
from random import randint
def main():
 lists = randomList()
 sortedList(lists)
​
def randomList():
 originalSequence = []
 for i in range(20):
 originalSequence.append(randint(0,99))
 print("original sequence:")
 print(originalSequence)
 return originalSequence

def sortedList(randList):
 randList.sort()
 print("sorted sequence:")
 print(randList)

main()

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22

12/22/21, 5:24 PM Lab09-ListsTuplesAndDictionaries - Jupyter Notebook

localhost:8888/notebooks/9----/Lab09-ListsTuplesAndDictionaries.ipynb 8/15

You may assume that all values are positive. You will keep reading input until the letter Q is entered. In order to solve this problem,
you need to first figure out the maximum value. That value’s bar should be drawn with 40 asterisks. Shorter bars should use
proportionally fewer asterisks.
Make sure that you use functions in your solution, including a main function.
Following are some sample runs

12/22/21, 5:24 PM Lab09-ListsTuplesAndDictionaries - Jupyter Notebook

localhost:8888/notebooks/9----/Lab09-ListsTuplesAndDictionaries.ipynb 9/15

12/22/21, 5:24 PM Lab09-ListsTuplesAndDictionaries - Jupyter Notebook

localhost:8888/notebooks/9----/Lab09-ListsTuplesAndDictionaries.ipynb 10/15

12/22/21, 5:24 PM Lab09-ListsTuplesAndDictionaries - Jupyter Notebook

localhost:8888/notebooks/9----/Lab09-ListsTuplesAndDictionaries.ipynb 11/15

In [6]:

Excercise # 3 A supermarket wants to reward its best customer of each day, showing the customer’s name on a screen in the
supermarket. For that purpose, the customer’s purchase amount is stored in a list and the customer’s name is stored in a

Please enter positive values, followed by Q to quit 1

Please enter positive values, followed by Q to quit 2

Please enter positive values, followed by Q to quit q

**

Exercise # 2 - Source Code
​
def main():
 userNumbers = enteredValues()
 maxValue = maximumValue(userNumbers)
 userNumbers = proportionList(maxValue,userNumbers)
 asteriks(userNumbers)
​
def enteredValues():
 values = []
 userInput = 0
 while userInput != "Q" and userInput != "q":
 userInput = input("Please enter positive values, followed by Q to quit ")
 if userInput != "Q" and userInput != "q":
 values.append(int(userInput))
 return values
​
def maximumValue(lists):
 maximum = max(lists)
 return maximum
​
def proportionList(maximum,lists):
 for i in range(len(lists)):
 lists.append(int((40/maximum*(lists[0]))))
 lists.pop(0)
 return lists

def asteriks(lists):
 for i in range(len(lists)):
 print("*"*(lists[i]))

main()

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

12/22/21, 5:24 PM Lab09-ListsTuplesAndDictionaries - Jupyter Notebook

localhost:8888/notebooks/9----/Lab09-ListsTuplesAndDictionaries.ipynb 12/15

corresponding list.
Implement a function nameOfBestCustomer that returns the name of the customer with the largest sale.

def nameOfBestCustomer(sales, customers)

Write a program that prompts the cashier to enter all prices and names, adds them to two lists, calls the function that you
implemented, and displays the result. Use a price of 0 as a sentinel.
Make sure that you use functions in your solution, including a main function.
Following are some sample runs

12/22/21, 5:24 PM Lab09-ListsTuplesAndDictionaries - Jupyter Notebook

localhost:8888/notebooks/9----/Lab09-ListsTuplesAndDictionaries.ipynb 13/15

In [7]:

Enter the amount of sale (0 to end): 0

No Sales Today

Exercise # 3 - Source Code
​
count = 0
​
def main():
 lists = listsMaker()
 if count != 0:
 maxValue = maximumValue(lists)
 bestCustomer(maxValue,lists)
​
def listsMaker():
 prices = []
 people = []
 userInput = 1
 while userInput != "0":
 userInput = input("Enter the amount of sale (0 to end): ")
 if userInput != "0":
 prices.append(int(userInput))
 userInput = float(userInput)
 peopleInput = input("Enter the name of the customer who paid %.2f: "%userInput)
 people.append(peopleInput)
 global count
 count += 1
 if userInput == "0" and count == 0:
 print("No Sales Today")
 lists = prices + people
 return lists
def maximumValue(lists):
 maximum = max(lists[0:(len(lists)//2)])
 return maximum
def bestCustomer(maximum,lists):
 position = lists.index(maximum)
 customer = lists[position+len(lists)//2]
 print("The best customer is %s"%customer)
​
main()

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

12/22/21, 5:24 PM Lab09-ListsTuplesAndDictionaries - Jupyter Notebook

localhost:8888/notebooks/9----/Lab09-ListsTuplesAndDictionaries.ipynb 14/15

Excercise # 4 Implement the sieve of Eratosthenes:
a function for computing prime numbers, known to
the ancient Greeks. Choose an integer n. This
function will compute all prime numbers up to, and
including, n.

First insert all numbers from 1 to n into a set.
Then erase all multiples of 2 (except 2); that is,
4, 6, 8, 10, 12,
Erase all multiples of 3, that is, 6, 9, 12, 15,
Go up to .

The remaining numbers are all primes.
Make sure that you use functions in your solution,
including a main function.

𝑛
⎯⎯

√

Following are some sample runs

12/22/21, 5:24 PM Lab09-ListsTuplesAndDictionaries - Jupyter Notebook

localhost:8888/notebooks/9----/Lab09-ListsTuplesAndDictionaries.ipynb 15/15

In [8]:

Enter a positive integer: 29

Prime numbers up to 29 are:

[2, 3, 5, 7, 11, 13, 17, 19, 23, 29]

Exercise # 4 - Source Code
​
def prime(a):
 Numbers=[]
 for i in range(2,a+1):
 Numbers.append(i)
 if Numbers.index(2)==0 and len(Numbers)==1:
 return ""
 else:
 for k in range(4,len(Numbers)+1,2):
 Numbers.remove(k)
 for ele in Numbers:
 if ele % 3==0 and ele!=3:
 Numbers.remove(ele)
 for l in Numbers:
 if round(l ** 0.5) ** 2 == l:
 Numbers.remove(l)
 return Numbers
​
def main():
 askNumbers=int(input("Enter a positive integer: "))
 if askNumbers==1:
 print("There are no prime numbers up to 1")
 else:
 k=prime(askNumbers)
 print(("Prime numbers up to "+str(askNumbers)+" are: "))
 print(k)
​
main()

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

