12/22/21, 5:28 PM Lab10-Files-Exceptions - Jupyter Notebook

1 ICS 104 - Introduction to Programming in Python and C

1.1 Files and Exceptions - Lab

2 Lab Objectives

» To read and write text files
» To process collections of data
» To raise and handle exceptions

3 Worked Example

» Problem Statement Read two country data files, Lab1@_worldpop.txt and Labl@_worldarea.txt . Both files contain the same
countries in the same order. Write a file Lab10_world_pop_density.txt that contains country names and population densities
(people per square km), with the country names aligned left and the numbers aligned right.

localhost:8888/notebooks/10-----/Lab10-Files-Exceptions.ipynb 111

12/22/21, 5:28 PM Lab10-Files-Exceptions - Jupyter Notebook

Q
it
o
R <
=%
—
[
o]
it
2!
@
=
|
1 B
P
fal «
=
o
<2}
—
o
©

Singapore is one of the most densely
populated countries in the world.

» Step 1: Understand the processing task
= We need to read each file, line by line, and then compute the density (The countries are stored in the same order).

While there are more lines to be read
Read a line from each file.
Extract the country name.
population = number following the country name in the line from the first file
area = number following the country name in the line from the second file
If area I=0
density = population / area
Print country name and density.

localhost:8888/notebooks/10-----/Lab10-Files-Exceptions.ipynb 2/1

12/22/21, 5:28 PM Lab10-Files-Exceptions - Jupyter Notebook

» Step 2: Determine which files you need to read and write.

e = |nput Files: Lab1@_worldpop.txt and Lab1@_worldarea.txt
= Qutput Files: Lab1@_world_pop_density.txt

» Step 3: Choose a mechanism for obtaining the file names.
= Hard-coding the filenames.

filename = "Labl@_worldpop.txt"

= Asking the user for inputting the filename.

filename = input("Enter filename: ")

» Hard-coded file names are included for simplicity.

« Step 4: Choose between iterating over the file or reading individual lines.
+ We will read individual lines using a while loop.

» Step 5: Extract the required data.

» Step 6: Use functions to factor out common tasks.
» Because both input files have the same format, the name of the country followed by a value, we can use a single function to extract a
data record.

localhost:8888/notebooks/10-----/Lab10-Files-Exceptions.ipynb 311

12/22/21, 5:28 PM Lab10-Files-Exceptions - Jupyter Notebook

In[]: 1 ##
2 # This program reads data files of country populations and areas and prints the
3 # population density for each country.
4 #
5
6 POPULATION_FILE = "Lable_worldpop.txt"
7 AREA_FILE = "Labl@ worldarea.txt"
8 REPORT_FILE = "Labl@ world_pop_density.txt"
9
10 def main() :
11 # Open the files.
12 popFile = open(POPULATION_ FILE, "r")
13 areaFile = open(AREA FILE, "r")
14 reportFile = open(REPORT_FILE, "w")
15
16 # Read the first population data record.
17 popData = extractDataRecord(popFile)
18 while len(popData) ==
19 # Read the next area data record.
20 areaData = extractDataRecord(areaFile)
21
22 # Extract the data components from the two Lists.
23 country = popData[@]
24 population = popData[1]
25 area = areaData[1]
26
27 # Compute and print the population density.
28 density = 0.0
29 if area > 0 : # Protect against division by zero.
30 density = population / area
31 reportFile.write("%-40s%15.2f\n" % (country, density))
32
33 # Read the next population data record.
34 popData = extractDataRecord(popFile)
35
36 # Close the files.
37 popFile.close()
38 areaFile.close()
39 reportFile.close()
40

41 ## Extracts and returns a record from an input file in which the data 1is
42 # organized by line. Each line contains the name of a country (possibly

localhost:8888/notebooks/10-----/Lab10-Files-Exceptions.ipynb 4/11

12/22/21, 5:28 PM Lab10-Files-Exceptions - Jupyter Notebook

43 # containing multiple words) followed by an integer (either population
44 # or area for the given country).

45 # (@param infile the input text file containing the Line oriented data
46 # (@return a List containing the country (string) 1in the first element
47 # and the population (int) or area (int) 1in the second element. If the end of
48 # file was reached, an empty Llist is returned.

49 #

50 def extractDataRecord(infile) :

51 line = infile.readline()

52 if line == ""

53 return []

54 else :

55 parts = line.rsplit(" ", 1)

56 parts[1] = int(parts[1])

57 return parts

58

59 # Start the program.

60 main()

4 Reading the Entire File

« There are two methods for reading an entire file.

» The call inputFile.read() returns a string with all characters in the file.

= The readlines method reads the entire contents of a text file into a list:
o inputFile = open("sample.txt", "r")
o listOfLines = inputFile.readlines()
o inputFile.close()

= Each element in the list returned by the readlines method is a string containing a single line from the file (including the

newline character). Only the last line does not contain the newline character.

5 Exercises

5.1 Exercise #1:

Write a program that reads from an input file and uses the following function to look for palindrome words.

localhost:8888/notebooks/10-----/Lab10-Files-Exceptions.ipynb 5/11

12/22/21, 5:28 PM Lab10-Files-Exceptions - Jupyter Notebook

def ispalindrome(w):
return w == w[::-1]

NOTES:

» Palindrome word is a word which reads the same backward as forward
« ispalindrome() function returns True or False depending on passed word. You should be able to use it even if you don't know how it
works.
» Consider words of length 3 and above (i.e "A" should not be checked)
» your code output:
= Qutput file containing the palindrome words
= A statement on the screen indicating how many palindrome words were found
» To check your code, copy the following to your input file:
Any good deed is even better in these days
Every motor has a rotor
Using my kayak at noon was a bad idea
« If you use the above three statements in the input file, the output would be:
= You have 4 palindrome words
They are stored in a file named: palindrome.txt
= Also an output file will be generated containing:
deed
rotor
kayak
noon

localhost:8888/notebooks/10-----/Lab10-Files-Exceptions.ipynb 6/11

12/22/21, 5:28 PM

Lab10-Files-Exceptions - Jupyter Notebook

In [1]: 1 # YOUR CODE HERE
2
3 TEXT_FILE = "input.txt"
4 PALINDROME_FILE = "palindrome.txt"
5 def main():

6 counter = 0

7 textFile = open(TEXT_FILE, "r")

8 palindromeFile = open(PALINDROME_FILE, "w")

9 for line in textFile:

10 wordList = line.split()

11 for word in wordList:

12 if ispalindrome(word):

13 if len(word) »>= 3:

14 palindromeFile.write("%s \n" %word)
15 counter += 1

16 print("You have",counter,"palindrome words")

17 print("They are stored in a file named: palindrome.txt")
18 textFile.close()

19 palindromeFile.close()

20

21 def ispalindrome(w):

22 return w == w[::-1]

23

24 main()

You have 4 palindrome words
They are stored in a file named: palindrome.txt

5.2 Exercise # 2:

Write a program that evaluates and prints the result of
. Where a should be less than 100. Your code should report error messages using try except block.

VG

b

NOTES:

» You should use try and except in your code

» The ZeroDivisionError exception will be generated automatically when trying to divide by 0

» The ValueError exception will take place in two cases:

localhost:8888/notebooks/10

= Automatically when trying to find the square root of a negative number
/Lab10-Files-Exceptions.ipynb

7

12/22/21, 5:28 PM

Lab10-Files-Exceptions - Jupyter Notebook

= manually when a>700 (using raise with if statement)

» The if statement in the previous point should be the only if statement in your code
« Sample runs are shown below:

localhost:8888/notebooks/10

/Lab10-Files-Exceptions.ipynb

Sample Run #1

enter the value of a 85
enter the value of b 3
The result is 3.87

Sample Run #2

enter the
enter the
The value

Sample Run #3

enter the
enter the
The value

Sample Run #4

value of a -9
value of b 9
of a should be non_negative and below 188

value of a 184
value of b 88.7
of a should be non_negative and below 188

enter the value of a 55.5
enter the value of b 8
The value of b can not be Gl

8/1

12/22/21, 5:28 PM

In [3]:

14
15
16
17

enter the value of a 55.5

YOUR CODE HERE

try:

from math import sqrt

a
b
o

if a > 100:
raise ValueError
print("The result is %.2f " %c)

except ZeroDivisionError:
print("The value of b can not be 0")

except ValueError:
print("The value of a should be non_negative and below 100")

enter the value of b ©
The value of b can not be ©

5.3 Exercise # 3:

Each line of a text-file scores.txt contains the ID of a student and his grades in 4 exams. Write a python program that reads grades.txt and
writes to an output file output.txt the ID , the worst exam grade, the best exam grade and the average grade for each student. You have to

use a dictionary with ids as key.

Lab10-Files-Exceptions - Jupyter Notebook

float(input("enter the value of a "))
float(input("enter the value of b "))
sqrt(a)/b

Also display the dictionary on the screen as shown below.

1
2
3
4
5
6
7

localhost:8888/notebooks/10--

{'201100010': [82.5, 75.0, 95.0], '201100020': [43.75, 30.0, 50.0],

01100040': [72.5, 60.0, 80.0],

contents of output file

ID
201100010
201100020
201100030
201100040
201100050

AVG
82.50
43.75
93.00
72.50
63.00

/Lab10-Files-Exceptions.ipynb

MIN
75.00
30.00
90.00
60.00
60.00

'201100050': [63.0, 60.0, 70.0]}

MAX

95.00
50.00
97.00
80.00
70.00

'201100030': [93.0, 90.0, 97.0],

'2

91

12/22/21, 5:28 PM

In [4]:

30
31
32
33
34
35

{'201100010': [82.5, 75.0, 95.0],

0':

localhost:8888/notebooks/10---

YOUR CODE HERE

textFile = open("scores.txt'

scores = {}
for line in textFile:
wordList = line.split()
counter = 0
for words in wordList:
if counter ==
wordList.pop(0)
scores[words] =
counter += 1

L)

wordList

Lab10-Files-Exceptions - Jupyter Notebook

outputFile = open("sortedscores.txt", "w")

outputFile.write(" ID
for key in scores:
ID = key

AVG

for i in range(len(scores[key])):
i = float((scores[key])[@])

scores[key].pop(9)

scores[key].append(i)
average = sum(scores[key])/len(scores[key])
minimum = min(scores[key])
maximum = max(scores[key])
for i in range(len(scores[key])):

scores[key].pop(0)

scores[key].append(average)
scores[key].append(minimum)
scores[key].append(maximum)
average = "{:.2f}".format(average)
minimum = "{:.2f}".format(minimum)
maximum = "{:.2f}".format(maximum)

outputFile.write(" {0}
print(scores)
textFile.close()
outputFile.close()

{1}

{2}

'201100020': [43.75, 30.0, 50.0],

MIN MAX\n")

{3} \n".format(ID,average,minimum,maximum))

[72.5, 60.0, 80.0], '201100050': [63.0, 60.0, 70.0]}

--/Lab10-Files-Exceptions.ipynb

'201100030': [93.0, 90.0, 97.0],

‘20110004

10/11

12/22/21, 5:28 PM Lab10-Files-Exceptions - Jupyter Notebook

localhost:8888/notebooks/10-----/Lab10-Files-Exceptions.ipynb 11/11

